10-12-23; просмотров + 77

Хирургическая фиксация переломов с относительной стабильностью
При относительной стабильности костные фрагменты перелома смещаются относительно друг друга при воздействии физиологической нагрузки через зону перелома.
Смещение увеличивается при увеличении прилагаемых нагрузок и уменьшается при повышении жесткости фиксатора.
Точного определения необходимой или допустимой эластичности не существует.
В целом, метод фиксации считается эластичным, если он допускает контролируемые межфрагментарные смещения при физиологических нагрузках.
Поэтому все методы фиксации, за исключением компрессии, могут рассматриваться как эластичная фиксация, обеспечивающая относительную стабильность.
Имплантаты
Имплантаты - устройства, как внешние фиксаторы, интрамедуллярные стержни или внутренние фиксаторы, обеспечивают относительную стабильность.
Степень эластичности может варьировать и определяется тем, как хирург применяет устройство и как оно нагружается.
Все перечисленные фиксаторы допускают межфрагментарную подвижность, которая может стимулировать образование мозоли.
Однако неправильное применение устройств может сопровождаться чрезмерной подвижностью и подавлять сращение.
Внешние фиксаторы
Внешние фиксаторы обычно обеспечивают относительную стабильность, хотя некоторые циркулярные фиксаторы могут применяться с приложением компрессии и обеспечением абсолютной стабильности.
Унилатеральные внешние фиксаторы нагружаются эксцентрично и демонстрируют асимметричные механические свойства. При нагрузке в плоскости проведения винтов Schanz их жесткость выше, чем в плоскости, перпендикулярной им.
Циркулярные фиксаторы проявляют практически одинаковые свойства во всех плоскостях, поэтому смещение костных фрагментов относительно друг друга в основном аксиальное.
Жесткость стабилизации перелома с помощью внешних фиксаторов зависит от следующих факторов:
- тип примененного имплантата, например винты Schanz и штанги;
- геометрическое расположение этих элементов относительно друг друга и относительно кости, т.е. одноплоскостная, двухплоскостная или циркулярная фиксация;
- соединение фиксатора с костью, например винты Schanz, натянутые спицы.
Стабильность фиксации зависит от следующих наиболее важных факторов:
- жесткость связующих штанг;
- расстояние между штангами и осью кости;
- чем жестче штанги и чем ближе они расположены к оси кости, тем более стабильна фиксация;
- количество, расположение и диаметр винтов Schanz или спиц и их натяжение.
Межфрагментарная подвижность фрагментов перелома при монолатеральной внешней фиксации под воздействием нагрузки является комбинацией осевых, сгибательных и поперечных смещений.
Применение двухтрубчатого фиксатора при частичной нагрузке в 200-400 Н приводит к межфрагментарным движениям с амплитудой до нескольких миллиметров и стимулирует образование мозоли.
Внешний фиксатор — единственная система, позволяющая хирургу управлять эластичностью фиксации путем регулирования фиксатора без дополнительного хирургического вмешательства.
Такая техника, называемая динамизацией, может применятъся для изменения нагрузок в зоне перелома по мере прогрессирования фащения.
Суть ее заключается в увеличении расстояния между штангами и костью иди уменьшении количесгва штанг. Кроме того, некоторые типы внешних фиксатаров обеспечивают возможность аксиального телескопирования для стимуляции процесса заживления.
Интрамедуллярные стержни
Классический стержень Kimtscher обеспечивает хорошую стабильность в отношении сгибательных нагрузок и срезающих усилий перпендикулярно его оси, но он практически не противодействует скручиванию и не может предотвратить аксиальное укорочение (телескопически).
Устойчивость к скручиванию самого стержня с прорезью невелика, и взаимодействие стержня и кости при торсионных и аксиальных нагрузках также нестабильно.
Поэтому в прошлом эффективное применение этого интрамедуллярного стержня в основном ограничивалось простыми поперечными или короткими косыми переломами, которые не склонны к укорочению и противодействуют ротационным усилиям за счет взаимозацепления фрагментов.
Достоинством стержня Kimtscher является то, что его эластичность стимулирует образование мозоли.
Внедрение блокируемых интрамедуллярных стержней, а также цельных и канюлированных стержней, позволило преодолеть многие из этих ограничений. Стержни с блокированием лучше противостоят ротационным и осевым нагрузкам.
Стабильность при таких нагрузках зависит от диаметра стержня, геометрии и количества блокирующих винтов и их пространственного расположения. Устойчивость к сгибательным нагрузкам зависит от плотности фиксации стержня в костномозговом канале и протяженности зоны перелома.
Единственным недостатком стержней с блокированием является непостоянная жесткость конструкции в системе кость-имплантат.
Отверстия для блокирования больше, чем диаметр блокирующих винтов, что облегчает блокирование «методом свободной руки». Конструкция допускает некоторую подвижность в зоне контакта стержня с блокирующими винтами даже при низких нагрузках.
Такая подвижность может снижаться за счет введения большего количества блокирующих винтов или применения систем с угловой стабилыюстыо фиксации, как например стержень для большеберцовой кости системы Expert.
Внутренние фиксаторы и мостовидные пластины
Пластины, перекрывающие многооскольчатый перелом на манер внешних фиксаторов, обеспечивают эластичное шинирование.
Жесткость этого метода внутренней фиксации зависит от размеров имплантата, количества и положения винтов, качества соединения винтов и пластины, фиксации винтов в кости.
Эти параметры определяются дизайном пластины (напр. блокирование винтов), типом кости (кортикальная или спонгиозная) и степенью остеопороза. Механика такого типа фиксации детально обсуждается в главах, посвященньк мосговидному остеосинтезу и внутренним фиксаторам.
Остеосинтез пластинами с обеспечением относительной стабильности следует применять только при многофрагментарных переломах, но не при переломах с простой конфигурацией, так как для них характерна высокая частота замедленной консолидации или несращений.
При остеосинтезе простых (напр. метафизарных) переломов следует использовать методы, обеспечивающие абсолютную стабильность.
Механобиология непрямого, или вторичного, сращения перелома
Подвижность отломков стимулирует формирование мозоли и ускоряет сращение. По мере созревания мозоль становится жестче, межфрагментарная подвижность значительно уменьшается, что делает возможным перекрытие щели перелома жесткой костной мозолью.
На ранних стадиях сращения при наличии в основном мягких тканей перелом выдерживает большие деформации или большие растяжения тканей, чем на более поздних стадиях, когда мозоль содержит в основном кальцифицированную ткань.
Механизм воздействия механических факторов на сращение перелома разъясняется теорией растяжения Perren. Растяжение является деформацией материала (напр. грануляционной ткани в щели перелома) при приложении заданной нагрузки.
Растяжение выражают как изменение длины (Д1) относительно ее первоначального значения (1) при приложении заданной силы.
Таким образом, оно не имеет единиц измерения и часто выражается в процентах. Величина деформации, которую ткань может выдержать без нарушения функции, варьирует в значительной степени.
Интактная кость устойчива к растяжению до 2% (до наступления перелома), тогда как грануляционная ткань выдерживает до 100% растяжения.
Костное перекрытие дистальной и проксимальной частей мозоли может наступать только если локальные напряжения (т.е. деформации) меньше напряжений, которые способна вьвдержать волокнистая кость.
Таким образом, жесткая мозоль не перекроет щель перелома, если подвижность его фрагментов слишком велика. Природа решает эту проблему увеличением объема мягкой мозоли, что приводит к уменьшению деформаций тканей в зоне перелома до уровня, позволяющего костное сращение.
Этот адаптационный механизм неэффективен, если щель перелома в значителыюй степени сужена, так как при этом возникающая подвижность отломков приводит к чрезмерному растяжению формирующихся тканей.
Таким образом, чрезмерная нагрузка в зоне перелома, сопровождающаяся избыточной подвижностью отломков, плохо влияет на процесс сращения на поздних стадиях консолидации.
На клеточном уровне, где происходят фундаментальные процессы регенерации кости и тканевой дифференциации, ситуация является более сложной.
Биомеханические условия, такие как растяжение и гидростатическое давление, неравномерно распределяются в пределах костной мозоли. Механорегуляция клеток мозоли представлена системой обратной связи, в которой сигналы создаются прилагаемыми нагрузками и корректируются тканями мозоли.
Механическая нагрузка ткани мозоли вызывает локальные биофизические стимулы, которые улавливаются клетками. Эта связь может регулировать фенотип, пролиферацию, апоптоз и метаболическую активность клеток.
При изменениях внеклеточного матрикса и сопутствующих изменениях свойств ткани биомеханические стимулы, вызываемые механическими нагрузками, корректируются и вызьшают различные биофизические сигналы даже при одинаковых нагрузках.
При нормальном сращении перелома этот процесс обратной связи стабилизируется после оссификации мозоли и восстановления исходного кортикального слоя. Сами биофизические сигналы и способы их действия по достижению биологических реакций являются предметом продолжающихся исследований.
Было установлено несколько алгоритмов механорегуляции, которые связаны с некоторыми аспектами сращения перелома, но они требуют дальнейших подтверждений.
Трансформация этих стимулов во внутри- и внеклеточные изменения активно исследуется; таким образом, для лечения замедленной консолидации и несращений могут появиться как физические, так и молекулярные методы лечения.
При шинировании перелома смещения фрагментов относительно друг друга зависят от следующих факторов:
- величины внешней нагрузки;
- жесткости шины;
- жесткости тканей, перекрывающих щель перелома.
Многооскольчатые переломы выдерживают большие смещения между двумя основным фрагментами, так как общее смещение распределяется между несколькими плоскостями, что уменьшает локальное напряжение или деформации в линиях перелома.
В настоящее время имеются клинический опыт и экспериментальные доказательства того, что гибкая фиксация может стимулировать образование мозоли, ускоряя тем самым сращение перелома.
Это наблюдается при диафизарных переломах, фиксированньк интрамедуллярными стержнями, внешними фиксаторами или мостовидными пластинами.
Если межфрагментарные деформации избыточны (нестабильность) или щель перелома слишком велика, то перекрытие перелома за счет твердой костной мозоли может не наступить, несмотря на хорошее потенциальное образование мозоли, при этом развивается гипертрофический ложный сустав.
Возможности стимуляции образования мозоли небезграничны и могут быть недостаточными, если требуется заполнение большого диастаза. В таких случаях динамизация (разблокирование интрамедуллярного стержня или внешнего фиксатора) может обеспечить костное сращение за счет консолидации щели перелома и увеличения его жесткости.
Формирование мозоли требует некоторой механической стимуляции и не происходит, если микроподвижность недостаточна. При излишней жесткости фиксации или слишком широкой щели перелома деформации в зоне перелома слиписом малы, что приводит к замедлению консолидации или несращению.
И снова динамизация может быть решением проблемы. Если пациент малоподвижен, чтобы нагружать оперированную конечность, то примененная извне нагрузка может быть способом стимуляции формирования мозоли.